Adding Numbers in Scientific Notation

Day 2

When adding with scientific notation, remember that the exponents must be the same in order to complete the problem.

Example 1:

$$\overline{(3.4 \times 10^{-5})}$$
 + (6.2×10^{-5}) = $(3.4 + 6.2) \times 10^{-5}$ = 9.6×10^{-5}

*Reminder: When the powers are the same: 1. Add the numbers (3.4 + 6.2).

2. The power of ten stays the same (10^{-5}) .

Example 2:

$$(5.7 \times 10^{4}) + (8.1 \times 10^{7}) = (5.7 \times 10^{4}) + (8100 \times 10^{4})$$
$$= (5.7 + 8100) \times 10^{4}$$
$$= 8,105.7 \times 10^{4}$$
$$= 8.1057 \times 10^{7}$$

- *Reminder: When the powers are different: 1. Rewrite one of the numbers so the power of 10 is the same.
 - 2. Add the numbers (5.7 + 8,100).
 - 3. Be sure the answer is written in scientific notation.

Find the solution to the following problems.

1.
$$(2.3 \times 10^3) + (6.9 \times 10^3)$$

$$9.2 \times 10^{3}$$

2.
$$(4.4 \times 10^{-6}) + (8.8 \times 10^{-6})$$

$$13.2 \times 10^{-6} = 1.32 \times 10^{-5}$$

3.
$$(4.81 \times 10^3) + (7.913 \times 10^5)$$
 4. $(3.6 \times 10^{-2}) + (4.0 \times 10^{-1})$

$$.0481 \times 10^{5} + 7.913 \times 10^{5}$$

4.
$$(3.6 \times 10^{-2}) + (4.0 \times 10^{-1})$$

$$\sqrt{(.36 \times 10^{-1}) + (4 \times 10^{-1})}$$

4. 36 × 10⁻¹

5.
$$(2.154 \times 10^{-2}) + (3.5 \times 10^{2})$$

$$+3.5$$
 $\times 10^{2}$ 3.5002154×10^{2}

6.
$$(7.5 \times 10^4) + (5.9 \times 10^6)$$

$$(7.5 \times 10^4) + (590 \times 10^4)$$

Subtracting Numbers in Scientific Notation

Day 2

$$\overline{(3.2 \times 10^3)} - (1.7 \times 10^3) = (3.2 - 1.7) \times 10^3 = 1.5 \times 10^3$$

*Reminder: When the powers are the same: 1. Subtract the numbers (3.2 - 1.7).

2. The power of ten stays the same (10³).

Example 2:

$$(4.23 \times 10^{5}) - (3.5 \times 10^{3}) = (423 \times 10^{3}) - (3.5 \times 10^{3})$$

$$= (423 - 3.5) \times 10^{3}$$

$$= 419.5 \times 10^{3}$$

$$= 4.195 \times 10^{5}$$

*Reminder: When the powers are different: 1. Rewrite one of the numbers so the power of 10 is the same.

2. Subtract the numbers (423 - 3.5).

3. Be sure the answer is written in scientific notation.

Solve the following problems. All answers are to be written in scientific notation.

1.
$$(4.61 \times 10^4) - (2.75 \times 10^4)$$

2.
$$(5.2 \times 10^{-3}) - (2.58 \times 10^{-3})$$

$$2.62 \times 10^{-3}$$

3.
$$(6.1 \times 10^4) - (2.43 \times 10^2)$$

$$(610 \times 10^{2})$$
 $-(2.43 \times 10^{2})$
 607.57×10^{2}
 6.0757×10^{4}

4.
$$(8.32 \times 10^{-3}) - (5.9 \times 10^{-4})$$

$$(83.2 \times 10^{-4}) - (5.9 \times 10^{-4})$$

$$77.3 \times 10^{-4}$$

$$7.73 \times 10^{-3}$$

5.
$$(7.61 \times 10^6) - (2.87 \times 10^4)$$

$$(7.61\times10^6)$$
 - $(.0287\times10^6)$ 6.03×10^{-2} - $.38\times10^{-2}$

6.
$$(6.03 \times 10^{-2}) - (3.8 \times 10^{-3})$$

$$6.03 \times 10^{-2} - .38 \times 10^{-2}$$

Multiplying Numbers in Scientific Notation

Day 3

Reminder: Exponents do <u>not</u> need to be the same when multiplying with scientific notation. You can use the commutative property when multiplying.

- 1. Multiply the numbers between 1 and 10 together.
- 2. Multiply the powers of 10 by adding the exponents.
- 3. Make sure to put the product in scientific notation.

Example 1:

$$(3 \times 10^4) (7.2 \times 10^6) = (3 \times 7.2) (10^4 \times 10^6) = 21.6 \times 10^{10} = 2.16 \times 10^{11}$$

Example 2:

$$(1.7 \times 10^{-6})$$
 (3.2 × 10⁻²) = (1.7 × 3.2) (10⁻⁶ × 10⁻²) = 5.44 × 10⁻⁸

Solve the problems below. Be sure to show your work.

1.
$$(2.4 \times 10^3) (1.5 \times 10^5)$$

2.
$$(5.2 \times 10^{-6}) (1.1 \times 10^{-3})$$

3.
$$(6.8 \times 10^4) (4.2 \times 10^4)$$

4.
$$(3.6 \times 10^{-3}) (5.5 \times 10^{-5})$$

5.
$$(7.42 \times 10^{12}) (1.4 \times 10^{-3})$$

6.
$$(2.13 \times 10^{-6}) (9.01 \times 10^{-7})$$

Dividing Numbers in Scientific Notation

Day 3

Reminder: Exponents do <u>not</u> need to be the same when dividing with scientific notation.

- 1. Divide the first two numbers.
- 2. Subtract the second exponent from the first exponent.
- 3. Be sure the quotient is in scientific notation.

Example:

$$(9.6 \times 10^4) \div (6.4 \times 10^2) = (9.6 \div 6.4) \times (10^4 \div 10^2) = 1.5 \times 10^2$$

Solve the following problems. Be sure to write the answer in scientific notation and show your work.

1.
$$(4.25 \times 10^6) \div (1.7 \times 10^3)$$

2.
$$(3.6 \times 10^7) \div (1.2 \times 10^3)$$

3.
$$(8.08 \times 10^{-10}) \div (4.0 \times 10^{-3})$$

4.
$$(5.25 \times 10^8) \div (3.5 \times 10^3)$$

5.
$$(4.5 \times 10^8) \div (9 \times 10^2)$$

6.
$$(5.76 \times 10^{-7}) \div (3 \times 10^{-9})$$